LOYOLA COLLEGE (AUTONOMOUS) CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER – APRIL 2025

PMT1MC02 - REAL ANALYSIS-I

	ate: 25-04-2025 Dept. No. Max. : 100 Marks ime: 09:00 AM - 12:00 PM
	SECTION A – K1 (CO1)
	Answer ALL the questions $(5 \times 1 = 5)$
1	Answer the following
a)	Define metric space.
b)	If $h(x) = \sin \frac{1}{x}$, $\forall x \neq 0$ in \mathcal{R} , find $h'(x)$.
c)	What distinguishes the Riemann Stieltjes integral from Riemann integral?
d)	Define uniform convergence of a series of functions.
e)	Why is the Weierstrass approximation theorem important?
	SECTION A – K2 (CO1)
	Answer ALL the questions $(5 \times 1 = 5)$
2	MCQ
a)	Let (M, ρ) be a metric space and $a \in M$ then the set $\{x \in M: \rho(x, a) \le r\}$ is called
	(i) open Set
	(ii) closed Set
	(iii) closed Sphere
	(iv) open Sphere
b)	If f has a derivative at c then it isat c .
	(i) continuous
	(ii) bounded
	(iii) closed
c)	(iv) none of the above. If <i>P</i> is refinement of <i>Q</i> then
	(i) $L(P, f, \propto) \ge L(Q, f, \propto)$
	$(i) L(P, f, \alpha) \leq L(Q, f, \alpha)$
	$(iii) U(P, f, \propto) = L(Q, f, \propto)$
	$(iv) U(P, f, \alpha) \ge U(Q, f, \alpha)$
d)	If $\{f_n\}$ is a sequence of continuous function on E and if $f_n \to f$ uniformly then f is on E .
	(i) discontinuous
	(ii) discontinuous (iii) closed
	(iv) differentiable
e)	Every equicontinuous family on a Is uniformly bounded
	(i) closed set
	(ii) derived set
	(iii) compact set
	(iv) none of the above

SECTION B – K3 (CO2)		
	Answer any THREE of the following $(3 \times 10 = 30)$	
3	Show that continuous image of a connected set is connected.	
4	If f is a real differentiable function on $[a, b]$ and suppose $f'(a) < \lambda < f'(b)$.defined on $[a, b]$. Show that there is a point $x \in (a, b)$ such that $f'(x) = \lambda$.	
5	If $f_1, f_2 \in \mathcal{R}(\alpha)$ on $[a, b]$. Show that $\int_a^b (f_1 + f_2) d\alpha = \int_a^b f_1 d\alpha + \int_a^b f_2 d\alpha$.	
6	Let E be a subset of \mathcal{R} , suppose $\lim_{n\to\infty} f_n(x) = f(x)$ pointwise, $x\in E$ and $M_n = \sup_{x\in E} f_n(x) - f(x) $ then	
	explain that $f_n(x) \to f$ uniformly iff $M_n \to 0$ as $n \to \infty$.	
7	Present and prepare that there exists a real continuous function on the real line which is nowhere differentiable.	
	SECTION C – K4 (CO3)	
	Answer any TWO of the following $(2 \times 12.5 = 25)$	
8	Suppose f is a continuous mapping of a compact metric space X into a metric space Y . Then criticize that $f(x)$ is compact.	
9	State and prove generalized mean value theorem.	
10	a) Analyze that the lower Riemann-Stieltjes integral cannot exceed the upper Riemann-Stieltjes integral. b) Let f be a bounded real valued function defined on $[a, b]$ and α be a monotonically increasing	
	function on $[a, b]$. if $f(x) = x$ and $\alpha(x) = x^2$. Does $\int_0^1 f d\alpha$ exists? If it exists, find its value. (8+4.5)	
11	Let α be monotonically increasing function on $[a, b]$ and let $\{f_n\}$ be a sequence of real valued functions defined on $[a, b]$. Such that $f_n \in RS(\alpha)$ on $[a, b]$ for $n = 1, 2, 3$ If $f_n \to f$ uniformly on $[a, b]$, Then	
	determine that f is itself integrable and $\int_a^b f d\alpha = \lim_{n \to \infty} \int_a^b f_n d\alpha$.	
SECTION D – K5 (CO4)		
	Answer any ONE of the following $(1 \times 15 = 15)$	
12	a) Suppose f and g are defined on $[a,b]$ and are differentiable at a point $x \in [a,b]$ then $f+g,f,g,f/g$ are differentiable at x , then support that (i) $(f+g)'(x) = f'(x) + g'(x)$ (ii) $(f,g)'(x) = f'(x)g(x) + g'(x)f(x)$ (iii) $(\frac{f}{g})'(x) = \frac{g(x)f'(x) - g'(x)f(x)}{(g(x))^2}$; $g(x) \neq 0$ b) Let $f(x) = \begin{cases} x^2, & x \neq 1 \\ 0, & x = 1 \end{cases}$ determine that $\lim_{x \to 1} x^2$ if limit exists. (12+3)	
13	a) State and prove Cauchy criterion for uniform convergence.	
	b) Test the uniform convergence of the sequence of the function $f_n(x) = x^n$ on $[0, k]$ where $k < 1$. (12+3)	
	SECTION E – K6 (CO5)	
1.4	Answer any ONE of the following $(1 \times 20 = 20)$	
14	a) State and demonstrate the necessary and sufficient condition for $f \in \mathcal{R}(\alpha)$ b) Suppose $\{f_n\}$ is a sequence of functions on E and suppose $ f_n(x) \leq M_n$, $x \in E$ then $\sum f_n$ converges uniformly if $\sum M_n$ converges. (12+8)	
15	Discuss and justify whether a uniformly continuous polynomial P_n is real for a continuous complex	
	function f in $[a, b]$.	

